Register now or log in to join your professional community.
nformation carried by an analog signal can be represented in a digital form by a sequence of its instantaneous valuesmeasured at discrete time instants. These signal readings are usually considered as signal sample values and the process of taking them is referred to as sampling. The instants at which the samples are obtained form a stream of uniform events, which can be depicted graphically as a sampling point process. Characteristic features of the sampled signals to a large extent depend on the patterns of the point processes generated and used for sampling. When sampling is mentioned in the context of DSP, usually it is assumed that the sampling considered is deterministic and periodic. The model of sampling according to which signal samples are separated by time intervals with a constant and known duration is the most popular. This is readily comprehensible because such a sampling approach appears to be the most natural and obvious. It also has a number of attractive advantages.
Sampling is the process of recording the values of a signal at given points in time. For A/D converters, these points in time are equidistant. The number of samples taken during one second is called the sample rate. Keep in mind that these samples are still analogue values. The mathematic description of the ideal sampling is the multiplication of the signal with a sequence of dirac pulses. In real A/D converters the sampling is carried out by a sample-and-hold buffer. The sample-and-hold buffer splits the sample period in a sample time and a hold time. In case of a voltage being sampled, a capacitor is switched to the input line during the sample time. During the hold time it is detached from the line and keeps its voltage.
Quantization[edit]Quantization is the process of representing the analog voltage from the sample-and-hold circuit by a fixed number of bits. The input analog voltage (or current) is compared to a set of pre-defined voltage (or current) levels. Each of the levels is represented by a unique binary number, and the binary number that corresponds to the level that is closest to the analog voltage is chosen to represent that sample. This process rounds the analog voltage to the nearest level, which means that the digital representation is an approximation to the analog voltage. There are a few methods for quantizing samples. The most commonly used ones are the dual slope method and the successive approximation.