Communiquez avec les autres et partagez vos connaissances professionnelles

Inscrivez-vous ou connectez-vous pour rejoindre votre communauté professionnelle.

Suivre

What is special about number 1729?

Hardy asked Ramanujan this question?

user-image
Question ajoutée par Vinod Jetley , Assistant General Manager , State Bank of India
Date de publication: 2014/08/30
Tomasz Modrzejewski
par Tomasz Modrzejewski , Python Developer , Freelancer

Number of taxi - in mathematics, enta number of taxis, usually denoted Ta (n) or Taxicab (n), is defined as the smallest number that can be expressed as the sum of two cubes in the n different ways. GH Hardy and EM Wright proved in1954 that such numbers exist for all positive integers n. However, the evidence does not help in determining the consecutive numbers Ta (n). So far known taxi twelve consecutive numbers.

\\\\operatorname{Ta}(1) =2 =1^3 +1^3

\\\\begin{matrix}\\\\operatorname{Ta}(2)&=&1729&=&1^3 +12^3 \\\\\\\\&&&=&9^3 +10^3\\\\end{matrix}\\\\begin{matrix}\\\\operatorname{Ta}(3)&=&&=&167^3 +436^3 \\\\\\\\&&&=&228^3 +423^3 \\\\\\\\&&&=&255^3 +414^3\\\\end{matrix}\\\\begin{matrix}\\\\operatorname{Ta}(4)&=&&=&2421^3 +19083^3 \\\\\\\\&&&=&5436^3 +18948^3 \\\\\\\\&&&=&10200^3 +18072^3 \\\\\\\\&&&=&13322^3 +16630^3\\\\end{matrix}\\\\begin{matrix}\\\\operatorname{Ta}(5)&=&6&=&38787^3 +365757^3 \\\\\\\\&&&=&107839^3 +362753^3 \\\\\\\\&&&=&205292^3 +342952^3 \\\\\\\\&&&=&221424^3 +336588^3 \\\\\\\\&&&=&231518^3 +331954^3\\\\end{matrix}\\\\begin{matrix}\\\\operatorname{Ta}(6)&=&2065344&=&582162^3 +^3 \\\\\\\\&&&=&3064173^3 +^3 \\\\\\\\&&&=&8519281^3 +^3 \\\\\\\\&&&=&^3 +^3 \\\\\\\\&&&=&^3 +^3 \\\\\\\\&&&=&^3 +^3\\\\end{matrix}\\\\begin{matrix}\\\\operatorname{Ta}(7)&=&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3\\\\\\\\&&&=&^3 +^3\\\\end{matrix}\\\\begin{matrix}\\\\operatorname{Ta}(8)&=&352&=&^3 ^3 \\\\\\\\&&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3\\\\\\\\&&&=&^3 ^3\\\\\\\\&&&=&^3 ^3\\\\end{matrix}\\\\begin{matrix}\\\\operatorname{Ta}(9)&=&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3 \\\\\\\\&&&=&^3 ^3\\\\\\\\&&&=&^3 ^3\\\\\\\\&&&=&^3 ^3\\\\\\\\&&&=&^3 ^3\\\\end{matrix}\\\\begin{matrix}\\\\operatorname{Ta}(10)&=&4&=&8^3 ^3 \\\\\\\\&&&=&6^3 ^3 \\\\\\\\&&&=&2^3 ^3 \\\\\\\\&&&=&8^3 ^3 \\\\\\\\&&&=&7^3 ^3 \\\\\\\\&&&=&8^3 ^3\\\\\\\\&&&=&3^3 ^3\\\\\\\\&&&=&2^3 ^3\\\\\\\\&&&=&0^3 ^3\\\\\\\\&&&=&6^3 ^3\\\\end{matrix}\\\\begin{matrix}\\\\operatorname{Ta}(11)&=&&=&4056^3356^3 \\\\\\\\&&&=&3042^314^3 \\\\\\\\&&&=&9724^352^3 \\\\\\\\&&&=&0696^316^3 \\\\\\\\&&&=&2786^326^3 \\\\\\\\&&&=&3769^347^3\\\\\\\\&&&=&2476^336^3\\\\\\\\&&&=&3461^351^3\\\\\\\\&&&=&3824^352^3\\\\\\\\&&&=&7120^38^3\\\\\\\\&&&=&1122^34^3\\\\end{matrix}\\\\begin{matrix}\\\\operatorname{Ta}(12)&=&5152&=&7910376^3124676^3 \\\\\\\\&&&=&9077782^3271194^3\\\\\\\\&&&=&4540004^3611792^3 \\\\\\\\&&&=&1117816^3868036^3 \\\\\\\\&&&=&1107206^3397546^3 \\\\\\\\&&&=&3117699^3690237^3 \\\\\\\\&&&=&1936196^324056^3 \\\\\\\\&&&=&1112631^366121^3 \\\\\\\\&&&=&8071104^305892^3 \\\\\\\\&&&=&3143520^322628^3 \\\\\\\\&&&=&9476526^341026^3 \\\\\\\\&&&=&6363462^37674^3\\\\end{matrix}

 

Fawzi Abusalma
par Fawzi Abusalma , Physics Tutor , Independent Teacher

it is the smallest number that can be written as the sum of cubes in two different ways.

  • 9^3 +10^3 =1729
  • 1^3 +12^3 =1729

They say that Ramanujan was in the hospital when he answered that, and immediately after hearing the number. that man is a great mathematician.

Vinod Jetley
par Vinod Jetley , Assistant General Manager , State Bank of India

The way I heard the story was that Hardy & Ramanujan were travelling in  a car. Hardy saw the number of taxi in front of their car as1729, and he asked its significance from Ramanujan. Ramanujan replied within seconds that this is the smallest number which can be expressed as sum of cubes of two natural numbers in two different ways.

May be that is why Hardy later called them Taxi numbers.

Asmaa Mahmoud
par Asmaa Mahmoud , Fire Fighting Engineer , Alkhadiya Combined Company for general contracting for buildings

Interesting question with interesting answer,it's a new information for me