Communiquez avec les autres et partagez vos connaissances professionnelles

Inscrivez-vous ou connectez-vous pour rejoindre votre communauté professionnelle.

Suivre

Solve the equation complex z + 3z = 1 + 3i

Tips A5-line solutions comparing real and imaginary parts of both sides of the equation. Equality of complex numbers Let z1 = x1 + y1i, z2 = x2 + y2i. Complex numbers z1, z2 are equal, i.e. z1 = z2, if and only if Re (z1) = Re (z2), Im (z1) = Im (z2) or x1 = x2, y1 = y2 example If x + y =2-i, then x =2, y = -1.

user-image
Question ajoutée par Tomasz Modrzejewski , Python Developer , Freelancer
Date de publication: 2014/05/22
jemaa ansi
par jemaa ansi , TEACHER , private school 9 APRIL FOUSSENA/PRIVATE SCHOOL GARDERI

the answer is:

z+3z=1+3i

so4z=1+3i

finaly z=1/4+3/4i

Padmavathi Duvvuri
par Padmavathi Duvvuri , HR Generalist , Banka Bioloo Private Limited

Let Z = x + iy,

Substitute in the equation z+3z=1+3i

x+iy+3(x+iy)=1+3i

x+iy+3x+3iy=1+3i

4x+4iy=1+3i

equating the real and imaginery parts, we get

4x=1,4iy=3i

x=1/4,y=3/4

z=1/4+3/4i

Abdul Samad Khan
par Abdul Samad Khan , Lecturer & Admin , Quaid-e-Azam college Swabi Pakistan

z+3z=1+3i

==>4z=1+3i

==> z=(1/4)+(3/4)i

==> Re(z)=1/4 and Im(z)=3/4

Vinod Jetley
par Vinod Jetley , Assistant General Manager , State Bank of India

z=0.25+0.75 i

More Questions Like This